
Poster template by ResearchPosters.co.za

Optimizing H265 Kernels
Ganesh Vernekar, Guide: Dr. Ramakrishna Upadrasta

Indian Institute of Technology, Hyderabad

H.265 is a block-oriented motion-compensation-based (predicting
frames) video compression standard, developed as a successor to the
very successful H264.
Compression is based on predicting pixels within the frame (intra
prediction), or pixels across the frames (inter prediction).

● A block of pixels within a frame is predicted using pixels from above
and left side of the block.

● H265 has 35 intra prediction kernels. 33 are directional.
○ In contrast, H264 has 9 kernels with 8 being directional.

● In H265, Block sizes can be 4x4,8x8,16x16,32x32,64x64.
○ Only 4x4, 8x8, 16x16 in H264.

This is a predominant type of prediction (or) compressions method used.

In this the relative displacement of pixels from previous or future frame is
encoded to get more compression.

I‑frames (intra coded frames) use only intra predictions.
● Less frequent in a video. Used as reference frames. Least

compressible, but highest quality.
P‑frames (predicted picture) can use data from previous frames to
decompress.
● More frequent compared to I-frames. Uses both inter and intra

prediction.
B‑frames (bidirectional predicted picture) can use both previous and
forward frames for data reference.
● Most frequent. Absent in some settings. Gives highest

compression. Mostly inter prediction.

Method: We took the industry standard Multicoreware’s (MCW) H265
open source code (x265.org) as our base and work on top of that.

Two sets of kernels. Each set has implementation of all kernels
separately or a single function called all_angle_pred which has all
kernels combined, and they are used as required.

1. First set is written purely in C++ to be compiled in the platform
 required.
○ A single templated function which takes care of all block

sizes and direction modes.
○ all_angle_pred just calls the single kernels one after

another, no optimizations.
2. Second set is written assembly (ASM) for x86 and ARM
 architectures.
○ Individual implementation of direction modes for all sizes and

all_angle_pred for all sizes with hand tuned optimization.

Our focus: “Optimize the C++ kernels using compiler optimization
techniques”.

We took the C++ kernels from MCW source code as the base and
generated our own modified kernels and optimized it to get improvement
in encoding performance.

● Studied H264 (found in SPEC-2006) and played with its kernels.
● Tried modifying H264 kernels and testing the modifications.
● Started studying H265 and how much more compute intensive it

was when compared to H264 (~4x more kernels).
● Studied MCW C++ and ASM kernels.

● Did a minor study of VP8/VP9 (encoding standard by Google).
● Generated individual H265 kernels from MCW C++ kernel

templates.
● Tried and tested many different modifications in the generated

kernels and many different optimization sequence.

Modifications in the kernels:
Following flow is the sequence of modification as a result of lots of
different trials and tests.
Most of the work was on all_angle_pred function which happens to
be most challenging.

1. Generated individual kernels using the MCW C++ kernel template
as a base (per direction mode, per block size, i.e. 4 * 33 = 132
kernels) and removed some calculations and memory accesses
which would else be present in the templated functions. [Last
semester]

2. Fuse all single kernels (per block size) to get all_angle_pred for
all block sizes.
● Similar loops were fused and similar instructions were kept

together, instead of having them one after another, while still
maintaining isolation between the data.

3. Manually combine common data between the kernels in the C++
kernel generator.

4. Combined random looking constants inside the half unrolled loop
into constant arrays for better vectorization. Inspired from study of
MCW assembly code.

5. Converted doubly nested loops into single loops by unrolling the
inner loop.

6. Broke down large expressions into multiple smaller expressions
inside the half unrolled loop, so that similar expressions are
together after total unrolling (optimizations discussed later).

We used LLVM compiler toolchain to perform the following optimizations.

Machine: 2 ⨉ Intel(R) Xeon(R) X5675 @3.07GHz (Total 12 cores, 24
HW threads), 157 GiB RAM
Videos:
● Generated 6000x4000 15 fps raw video from 941 Farewell pics.
● Generated 2160p10 video from same 941 pics.
● 5 2160p50 videos from https://media.xiph.org/video/derf/

Settings:
● B-Frames disabled.
● At max 5 P-frames between 2 consecutive I-frame (5:1 ratio).

Average data processing speed for I and P frames (higher is better):

Encoding time (lower is better):

Encoding Data Rate over time (higher is better):

● Though the code size bloats with these changes, we could see
good improvements in encoding speed wherever intra prediction
was used.

● More effective for higher resolutions.
● There is still room for improvement in C++ code.

○ MCW ASM is 2-4x faster than MCW C++.

Future Work:
● Reduce the size of generated kernels via modification and compiler

optimizations.
● Inter prediction forms a large part of encoding process (P and B

frames). Explore Inter predictions and optimize that.
● Explore other parts written in ASM, like video filters and copying

blocks and other memory operations, and see how it can be made
better in C++ using compiler optimizations.

Introduction

Intra Prediction

Inter Prediction

Types of Frames

Source of Code

This Semester

// a1 ~ fracp_1, a2 ~ ref_1, a3 ~ off_1, a4 ~ fracq_1

for(int y=0; y<32; y++) {

 dst[y*32+0] = ((a1[y]*a2[a3[y]+0])+(a4[y]*a2[a3[y]+1])+16)>>5;

 dst[y*32+1] = ((a1[y]*a2[a3[y]+1])+(a4[y]*a2[a3[y]+2])+16)>>5;

 ...

}

for(int y=0; y<32; y++) {

 tmp_dst[0] = a1[y]*a2[a3[y]+0];

 tmp_dst[1] = a1[y]*a2[a3[y]+1];

 ...

 tmp_dst[0]+ = a4[y]*a5[a3[y]+1];

 tmp_dst[1]+ = a4[y]*a5[a3[y]+2];

 ...

 dst[y*32+0] = (tmp_dst[0]+16)>>5

 dst[y*32+1] = (tmp_dst[1]+16)>>5

 ...

}

for(int x=0; x<32; x++) {

 ...

 dst1[1*32 + x] = (19*ref_1[0+0] + 13*ref_1[0+1] + 16) >> 5;

 dst1[1*32 + x] = (6*ref_1[0+1] + 26*ref_1[0+2] + 16) >> 5;

 dst1[1*32 + x] = (25*ref_1[1+2] + 7*ref_1[1+3] + 16) >> 5;

 ...

 dst2[2*32 + x] = (17*ref_2[-1+0] + 15*ref_2[-1+1] + 16) >> 5;

 dst2[2*32 + x] = (2*ref_2[-2+1] + 30*ref_2[-2+2] + 16) >> 5;

 dst2[2*32 + x] = (19*ref_2[-2+2] + 13*ref_2[-2+3] + 16) >> 5;

 ...

}

const int fracp_1[] = {19,6,25,...};

const int fracq_1[] = {13,26,7,...};

const int off_1[] = {0,0,1,...};

const int fracp_2[] = {17,2,19,...};

const int fracq_2[] = {15,30,13,...};

const int off_2[] = {-1,-2,-2,...};

...

for(int y=0; y<32; y++) {

 for(int x=0; x<32; x++) {

 dst[y*32 + x] = (fracp_1[y]*ref_1[off_1[y]+x]

 + fracq_1[y]*ref_1[off_1[y]+x+1] + 16) >> 5;

 }

}

dst += 32*32;

for(int y=0; y<32; y++) {

 for(int x=0; x<32; x++) {

 dst[y*32 + x] = (fracp_2[y]*ref_2[off_2[y]+x]

 + fracq_2[y]*ref_2[off_2[y]+x+1] + 16) >> 5;

 }

}

...

// Kernel 1

stmts1_1;

for(...) { stmts2_1; }

stmts3_1;

for(...) { stmts4_1; }

....

// Kernel 2

stmts1_2;

for(...) { stmts2_2; }

stmts3_2;

for(...) { stmts4_2; }

....

 // Fused Kernel 1 and 2

 stmts1_1; stmts1_2;

 for(...) { stmts2_1; stmts2_2; }

 stmts3_1; stmts3_2;

 for(...) { stmts4_1; stmts4_2; }

Compiler Optimization

Simply CFG and
Loops

-mem2reg -simplifycfg
-loops -loop-simplify
-loop-rotate -indvars

Unroll all Loops -loop-unroll
-unroll-count=1024

Scalar Replacement of
Aggregates

Common
Subexpression

Elimination

Actual LLVM Passes

-sroa

-early-cse
-early-cse-memssa

Vectorization

LLVM’s O3

-load-store-vectorizer
-scalarizer

-slp-vectorizer

-O3

Initial Tests Results

Videos
I-frame (kb/s data processed) P-frame (kb/s data processed)

MCW C++ Our Kernels MCW C++ Our Kernels

generated_6kx4k_15fps 50285 50771.64 (+486.64) 34149.56
35430.77

(+1281.21)
generated_2160p10 17618.55 17809.07 (+190.52) 10908.58 11330.01 (+421.43)
crowd_run_2160p50 125933.75 127436.21 (+1502.46) 22630.15 22824.63 (+194.48)

ducks_take_off_2160p50 112553.07 112499.99 (-53.08) 37257.64 37246.89 (-10.75)
in_to_tree_2160p50 96882.99 96788.12 (-94.87) 6513.32 6534.2 (+20.88)

old_town_cross_2160p50 74279.62 74427.94 (+148.32) 2027.83 2049.24 (+21.41)
park_joy_2160p50 168585.14 168730.73 (+145.59) 29506.8 29604.15 (+97.35)

Videos
Encoding time (seconds)

MCW C++ Our Kernels
generated_6kx4k_15fps 3199.39 3095.61 (-103.78)

generated_2160p10 1162.09 1123.68 (-38.41)
crowd_run_2160p50 331.14 322.45 (-8.69)

ducks_take_off_2160p50 432.38 419.94 (-12.44)
in_to_tree_2160p50 314.46 305.87 (-8.59)

old_town_cross_2160p50 255.87 249.83 (-6.04)
park_joy_2160p50 354.89 348.13 (-6.76)

Image Credits:http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf, https://en.wikipedia.org/wiki/Video_compression_picture_types

Conclusion and Future work

Last Semester

https://en.wikipedia.org/wiki/Motion_compensation
https://en.wikipedia.org/wiki/Video_compression_standard
http://x265.org/
https://media.xiph.org/video/derf/
http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf
https://en.wikipedia.org/wiki/Video_compression_picture_types

