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H.265 is a block-oriented motion-compensation-based (predicting 
frames) video compression standard, developed as a successor to the 
very successful H264.
Compression is based on predicting pixels within the frame (intra 
prediction), or pixels across the frames (inter prediction).

● A block of pixels within a frame is predicted using pixels from above 
and left side of the block.

● H265 has 35 intra prediction kernels. 33 are directional.
○ In contrast, H264 has 9 kernels with 8 being directional.

● In H265, Block sizes can be 4x4,8x8,16x16,32x32,64x64.
○ Only 4x4, 8x8, 16x16 in H264.

This is a predominant type of prediction (or) compressions method used. 

In this the relative displacement of pixels from previous or future frame is 
encoded to get more compression.

I‑frames (intra coded frames) use only intra predictions.
● Less frequent in a video. Used as reference frames. Least 

compressible, but highest quality.
P‑frames (predicted picture) can use data from previous frames to 
decompress.
● More frequent compared to I-frames. Uses both inter and intra 

prediction.
B‑frames (bidirectional predicted picture) can use both previous and 
forward frames for data reference. 
● Most frequent. Absent in some settings. Gives highest 

compression. Mostly inter prediction.

Method: We took the industry standard Multicoreware’s (MCW) H265 
open source code (x265.org) as our base and work on top of that.

Two sets of kernels. Each set has implementation of all kernels 
separately or a single function called all_angle_pred which has all 
kernels combined, and they are used as required. 

1. First set is written purely in C++ to be compiled in the platform 
    required.
○ A single templated function which takes care of all block 

sizes and direction modes.
○ all_angle_pred just calls the single kernels one after 

another, no optimizations.
2. Second set is written assembly (ASM) for x86 and ARM 
    architectures.
○ Individual implementation of direction modes for all sizes and 

all_angle_pred for all sizes with hand tuned optimization.

Our focus: “Optimize the C++ kernels using compiler optimization 
techniques”.

We took the C++ kernels from MCW source code as the base and 
generated our own modified kernels and optimized it to get improvement 
in encoding performance.

● Studied H264 (found in SPEC-2006) and played with its kernels.
● Tried modifying H264 kernels and testing the modifications.
● Started studying H265 and how much more compute intensive it 

was when compared to H264 (~4x more kernels).
● Studied MCW C++ and ASM kernels.

● Did a minor study of VP8/VP9 (encoding standard by Google).
● Generated individual H265 kernels from MCW C++ kernel 

templates.
● Tried and tested many different modifications in the generated 

kernels and many different optimization sequence.

Modifications in the kernels:
Following flow is the sequence of modification as a result of lots of 
different trials and tests.
Most of the work was on all_angle_pred function which happens to 
be most challenging.

1. Generated individual kernels using the MCW C++ kernel template 
as a base (per direction mode, per block size, i.e. 4 * 33 = 132 
kernels) and removed some calculations and memory accesses 
which would else be present in the templated functions. [Last 
semester]

2. Fuse all single kernels (per block size) to get all_angle_pred for 
all block sizes.
● Similar loops were fused and similar instructions were kept 

together, instead of having them one after another, while still 
maintaining isolation between the data.

3. Manually combine common data between the kernels in the C++ 
kernel generator. 

4. Combined random looking constants inside the half unrolled loop 
into constant arrays for better vectorization. Inspired from study of 
MCW assembly code.

5. Converted doubly nested loops into single loops by unrolling the 
inner loop.

6. Broke down large expressions into multiple smaller expressions 
inside the half unrolled loop, so that similar expressions are 
together after total unrolling  (optimizations discussed later).

We used LLVM compiler toolchain to perform the following optimizations. 

Machine: 2 ⨉ Intel(R) Xeon(R) X5675 @3.07GHz (Total 12 cores, 24 
HW threads), 157 GiB RAM
Videos: 
● Generated 6000x4000 15 fps raw video from 941 Farewell pics. 
● Generated 2160p10 video from same 941 pics.
● 5 2160p50 videos from https://media.xiph.org/video/derf/

Settings:
● B-Frames disabled.
● At max 5 P-frames between 2 consecutive I-frame (5:1 ratio).

Average data processing speed for I and P frames (higher is better):

Encoding time (lower is better):

Encoding Data Rate over time (higher is better):

● Though the code size bloats with these changes, we could see 
good improvements in encoding speed wherever intra prediction 
was used.

● More effective for higher resolutions.
● There is still room for improvement in C++ code.

○ MCW ASM is 2-4x faster than MCW C++.

Future Work:
● Reduce the size of generated kernels via modification and compiler 

optimizations.
● Inter prediction forms a large part of encoding process (P and B 

frames). Explore Inter predictions and optimize that.
● Explore other parts written in ASM, like video filters and copying 

blocks and other memory operations, and see how it can be made 
better in C++ using compiler optimizations.
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// a1 ~ fracp_1, a2 ~ ref_1, a3 ~ off_1, a4 ~ fracq_1

for(int y=0; y<32; y++) {

    dst[y*32+0] = ((a1[y]*a2[a3[y]+0])+(a4[y]*a2[a3[y]+1])+16)>>5;

    dst[y*32+1] = ((a1[y]*a2[a3[y]+1])+(a4[y]*a2[a3[y]+2])+16)>>5;

    ...

}

for(int y=0; y<32; y++) {

    tmp_dst[0] = a1[y]*a2[a3[y]+0];

    tmp_dst[1] = a1[y]*a2[a3[y]+1];

    ...

    tmp_dst[0]+ = a4[y]*a5[a3[y]+1];

    tmp_dst[1]+ = a4[y]*a5[a3[y]+2];

    ...

    dst[y*32+0] = (tmp_dst[0]+16)>>5

    dst[y*32+1] = (tmp_dst[1]+16)>>5

    ...

}

for(int x=0; x<32; x++) {

    ...

    dst1[1*32 + x] = (19*ref_1[0+0] + 13*ref_1[0+1] + 16) >> 5;

    dst1[1*32 + x] = (6*ref_1[0+1] + 26*ref_1[0+2] + 16) >> 5;

    dst1[1*32 + x] = (25*ref_1[1+2] + 7*ref_1[1+3] + 16) >> 5;

    ...

    dst2[2*32 + x] = (17*ref_2[-1+0] + 15*ref_2[-1+1] + 16) >> 5;

    dst2[2*32 + x] = (2*ref_2[-2+1] + 30*ref_2[-2+2] + 16) >> 5;

    dst2[2*32 + x] = (19*ref_2[-2+2] + 13*ref_2[-2+3] + 16) >> 5;

    ...

}

const int fracp_1[] = {19,6,25,...};

const int fracq_1[] = {13,26,7,...};

const int off_1[] = {0,0,1,...};

const int fracp_2[] = {17,2,19,...};

const int fracq_2[] = {15,30,13,...};

const int off_2[] = {-1,-2,-2,...};

...

for(int y=0; y<32; y++) {

    for(int x=0; x<32; x++) {

        dst[y*32 + x] = (fracp_1[y]*ref_1[off_1[y]+x]

                         + fracq_1[y]*ref_1[off_1[y]+x+1] + 16) >> 5;

    }

}

dst += 32*32;

for(int y=0; y<32; y++) {

    for(int x=0; x<32; x++) {

        dst[y*32 + x] = (fracp_2[y]*ref_2[off_2[y]+x]

                         + fracq_2[y]*ref_2[off_2[y]+x+1] + 16) >> 5;

    }

}

...

// Kernel 1

stmts1_1;

for(...) { stmts2_1; }

stmts3_1;

for(...) { stmts4_1; }

....

// Kernel 2

stmts1_2;

for(...) { stmts2_2; }

stmts3_2;

for(...) { stmts4_2; }

....

                  // Fused Kernel 1 and 2

                  stmts1_1; stmts1_2;

                  for(...) { stmts2_1; stmts2_2; }

                  stmts3_1; stmts3_2;

                  for(...) { stmts4_1; stmts4_2; }

                  ....

Compiler Optimization

Simply CFG and 
Loops

-mem2reg -simplifycfg 
-loops -loop-simplify 
-loop-rotate -indvars

Unroll all Loops -loop-unroll
-unroll-count=1024

Scalar Replacement of 
Aggregates

Common 
Subexpression 

Elimination

Actual LLVM Passes

-sroa

-early-cse
-early-cse-memssa

Vectorization

LLVM’s O3

-load-store-vectorizer 
-scalarizer 

-slp-vectorizer

-O3

Initial Tests Results

Videos
I-frame (kb/s data processed) P-frame (kb/s data processed)

MCW C++ Our Kernels MCW C++ Our Kernels

generated_6kx4k_15fps 50285 50771.64 (+486.64) 34149.56
35430.77 

(+1281.21)
generated_2160p10 17618.55 17809.07 (+190.52) 10908.58 11330.01 (+421.43)
crowd_run_2160p50 125933.75 127436.21 (+1502.46) 22630.15 22824.63 (+194.48)

ducks_take_off_2160p50 112553.07 112499.99 (-53.08) 37257.64 37246.89 (-10.75)
in_to_tree_2160p50 96882.99 96788.12 (-94.87) 6513.32 6534.2 (+20.88)

old_town_cross_2160p50 74279.62 74427.94 (+148.32) 2027.83 2049.24 (+21.41)
park_joy_2160p50 168585.14 168730.73 (+145.59) 29506.8 29604.15 (+97.35)

Videos
Encoding time (seconds)

MCW C++ Our Kernels
generated_6kx4k_15fps 3199.39 3095.61 (-103.78)

generated_2160p10 1162.09 1123.68 (-38.41)
crowd_run_2160p50 331.14 322.45 (-8.69)

ducks_take_off_2160p50 432.38 419.94 (-12.44)
in_to_tree_2160p50 314.46 305.87 (-8.59)

old_town_cross_2160p50 255.87 249.83 (-6.04)
park_joy_2160p50 354.89 348.13 (-6.76)

Image Credits:http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IEEE-HEVC-Overview.pdf,  https://en.wikipedia.org/wiki/Video_compression_picture_types

Conclusion and Future work
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